Data quality refers to the state of Qualitative data or quantitative pieces of information. There are many definitions of data quality, but data is generally considered high quality if it is "fit for its intended uses in operations, decision making and planning". Data is deemed of high quality if it correctly represents the real-world construct to which it refers. Apart from these definitions, as the number of data sources increases, the question of internal data consistency becomes significant, regardless of fitness for use for any particular external purpose.
People's views on data quality can often be in disagreement, even when discussing the same set of data used for the same purpose. When this is the case, businesses may adopt recognised international standards for data quality (See #International Standards for Data Quality below). Data governance can also be used to form agreed upon definitions and standards, including international standards, for data quality. In such cases, data cleansing, including standardization, may be required in order to ensure data quality.
From a consumer perspective, data quality is:
From a business perspective, data quality is:
From a standards-based perspective, data quality is:
Arguably, in all these cases, "data quality" is a comparison of the actual state of a particular set of data to a desired state, with the desired state being typically referred to as "fit for use," "to specification," "meeting consumer expectations," "free of defect," or "meeting requirements." These expectations, specifications, and requirements are usually defined by one or more individuals or groups, standards organizations, laws and regulations, business policies, or software development policies.
A systematic scoping review of the literature suggests that data quality dimensions and methods with real world data are not consistent in the literature, and as a result quality assessments are challenging due to the complex and heterogeneous nature of these data.
Companies with an emphasis on marketing often focused their quality efforts on name and address information, but data quality is recognized as an important property of all types of data. Principles of data quality can be applied to supply chain data, transactional data, and nearly every other category of data found. For example, making supply chain data conform to a certain standard has value to an organization by: 1) avoiding overstocking of similar but slightly different stock; 2) avoiding false stock-out; 3) improving the understanding of vendor purchases to negotiate volume discounts; and 4) avoiding logistics costs in stocking and shipping parts across a large organization.
For companies with significant research efforts, data quality can include developing protocols for research methods, reducing measurement error, bounds checking of data, cross tabulation, modeling and outlier detection, verifying data integrity, etc.
A considerable amount of data quality research involves investigating and describing various categories of desirable attributes (or dimensions) of data. Nearly 200 such terms have been identified and there is little agreement in their nature (are these concepts, goals or criteria?), their definitions or measures (Wang et al., 1993). Software engineers may recognize this as a similar problem to "ilities".
MIT has an Information Quality (MITIQ) Program, led by Professor Richard Wang, which produces a large number of publications and hosts a significant international conference in this field (International Conference on Information Quality, ICIQ). This program grew out of the work done by Hansen on the "Zero Defect Data" framework (Hansen, 1991).
In practice, data quality is a concern for professionals involved with a wide range of information systems, ranging from data warehousing and business intelligence to customer relationship management and supply chain management. One industry study estimated the total cost to the U.S. economy of data quality problems at over U.S. $600 billion per annum (Eckerson, 2002). Incorrect data – which includes invalid and outdated information – can originate from different data sources – through data entry, or data migration and conversion projects.
In 2002, the USPS and PricewaterhouseCoopers released a report stating that 23.6 percent of all U.S. mail sent is incorrectly addressed.
One reason contact data becomes stale very quickly in the average database – more than 45 million Americans change their address every year.
In fact, the problem is such a concern that companies are beginning to set up a data governance team whose sole role in the corporation is to be responsible for data quality. In some organizations, this data governance function has been established as part of a larger Regulatory Compliance function - a recognition of the importance of Data/Information Quality to organizations.
Problems with data quality don't only arise from incorrect data; inconsistent data is a problem as well. Eliminating shadow system and centralizing data in a warehouse is one of the initiatives a company can take to ensure data consistency.
Enterprises, scientists, and researchers are starting to participate within data curation communities to improve the quality of their common data.E. Curry, A. Freitas, and S. O'Riáin, "The Role of Community-Driven Data Curation for Enterprises", in Linking Enterprise Data, D. Wood, Ed. Boston, Mass.: Springer US, 2010, pp. 25-47.
The market is going some way to providing data quality assurance. A number of vendors make tools for analyzing and repairing poor quality data in situ, service providers can clean the data on a contract basis and consultants can advise on fixing processes or systems to avoid data quality problems in the first place. Most data quality tools offer a series of tools for improving data, which may include some or all of the following:
These activities can be undertaken as part of data warehousing or as part of the database administration of an existing piece of application software.
Before:
After QA process the following statistics are gathered to guide the Quality Control (QC) process:
The Data QC process uses the information from the QA process to decide to use the data for analysis or in an application or business process. General example: if a Data QC process finds that the data contains too many errors or inconsistencies, then it prevents that data from being used for its intended process which could cause disruption. Specific example: providing invalid measurements from several sensors to the automatic pilot feature on an aircraft could cause it to crash. Thus, establishing a QC process provides data usage protection.
DQ checks and business rules may easily overlap if an organization is not attentive of its DQ scope. Business teams should understand the DQ scope thoroughly in order to avoid overlap. Data quality checks are redundant if business logic covers the same functionality and fulfills the same purpose as DQ. The DQ scope of an organization should be defined in DQ strategy and well implemented. Some data quality checks may be translated into business rules after repeated instances of exceptions in the past.
Below are a few areas of data flows that may need perennial DQ checks:
Completeness and precision DQ checks on all data may be performed at the point of entry for each mandatory attribute from each source system. Few attribute values are created way after the initial creation of the transaction; in such cases, administering these checks becomes tricky and should be done immediately after the defined event of that attribute's source and the transaction's other core attribute conditions are met.
All data having attributes referring to Reference Data in the organization may be validated against the set of well-defined valid values of Reference Data to discover new or discrepant values through the validity DQ check. Results may be used to update Reference Data administered under Master Data Management (MDM).
All data sourced from a third party to organization's internal teams may undergo accuracy (DQ) check against the third party data. These DQ check results are valuable when administered on data that made multiple hops after the point of entry of that data but before that data becomes authorized or stored for enterprise intelligence.
All data columns that refer to Master Data may be validated for its consistency check. A DQ check administered on the data at the point of entry discovers new data for the MDM process, but a DQ check administered after the point of entry discovers the failure (not exceptions) of consistency.
As data transforms, multiple timestamps and the positions of that timestamps are captured and may be compared against each other and its leeway to validate its value, decay, operational significance against a defined SLA (service level agreement). This timeliness DQ check can be utilized to decrease data value decay rate and optimize the policies of data movement timeline.
In an organization complex logic is usually segregated into simpler logic across multiple processes. Reasonableness DQ checks on such complex logic yielding to a logical result within a specific range of values or static interrelationships (aggregated business rules) may be validated to discover complicated but crucial business processes and outliers of the data, its drift from BAU (business as usual) expectations, and may provide possible exceptions eventually resulting into data issues. This check may be a simple generic aggregation rule engulfed by large chunk of data or it can be a complicated logic on a group of attributes of a transaction pertaining to the core business of the organization. This DQ check requires high degree of business knowledge and acumen. Discovery of reasonableness issues may aid for policy and strategy changes by either business or data governance or both.
Conformity checks and integrity checks need not covered in all business needs, it's strictly under the database architecture's discretion.
There are many places in the data movement where DQ checks may not be required. For instance, DQ check for completeness and precision on not–null columns is redundant for the data sourced from database. Similarly, data should be validated for its accuracy with respect to time when the data is stitched across disparate sources. However, that is a business rule and should not be in the DQ scope.
Regretfully, from a software development perspective, DQ is often seen as a nonfunctional requirement. And as such, key data quality checks/processes are not factored into the final software solution. Within Healthcare, wearable technologies or Body Area Networks, generate large volumes of data.O'Donoghue, John, and John Herbert. "Data management within mHealth environments: Patient sensors, mobile devices, and databases". Journal of Data and Information Quality ( JDIQ) 4.1 (2012): 5. The level of detail required to ensure data quality is extremely high and is often underestimated. This is also true for the vast majority of mHealth apps, EHRs and other health related software solutions. However, some open source tools exist that examine data quality. The primary reason for this, stems from the extra cost involved is added a higher degree of rigor within the software architecture.
|
|